CHILE NO TIENE ENERGIA SUFICIENTE PARA AFRONTAR EL CRECIMIENTO BUSCADO Y ESPERADO POR TODOS. LOS BIOCOMBUSTIBLES SON PARTE DE LA SOLUCION. TU NO ESTAS SOLO O SOLA EN ESTE MUNDO SI TE GUSTA UN ARTICULO, COMPARTELO, DIFUNDELO EN LAS REDES SOCIALES, TWITTER, FACEBOOK.

viernes, noviembre 02, 2007

Sustentabilidad global: una noble causa

Sustentabilidad global: una noble causa

Premios Nobel, políticos y científicos debaten en Potsdam, Alemania, sobre estrategias de sostenibilidad. El objetivo es ayudar a evitar una posible catástrofe climática.

Los días 9 y 10 de octubre se reúnen en la ciudad del este de Alemania 15 Premios Nobel, más de 30 renombrados científicos y representantes de la política, la economía y la sociedad en el marco de un simposio interdisciplinario sobre el tema de la sostenibilidad global.

Angela Merkel (medio) en el Simposio sobre Sustentabilidad Global. Bildunterschrift: Großansicht des Bildes mit der Bildunterschrift:  Angela Merkel (medio) en el Simposio sobre Sustentabilidad Global. Patrocinadora y participante del simposio de los Nobel es la canciller federal alemana, Angela Merkel, ella misma doctorada en física y convencida partidaria de hacer algo lo antes posible contra el cambio climático mundial.

En el simposio, que lleva el título "Global Sustainability: A Nobel Cause", se intercambiarán ideas sobre cuáles son los mejores enfoques científicos y políticos para proteger el clima y asegurar una sostenibilidad global.

La idea de la sostenibilidad global se propaga desde la Conferencia de las NN. UU. sobre Medio Ambiente y Desarrollo celebrada en Río de Janeiro en 1992. En esencia supone recurrir a recursos renovables y disminuir su consumo a un nivel que asegure su permanente regeneración.

Hacia el "Memorando de Potsdam"

En el foco del simposio están estrategias viables para salirle al paso al cambio climático y sus consecuencias ecológicas y socioeconómicas. Los resultados no serán meramente declamatorios, sino que, resumidos en un "Memorando de Potsdam", serán presentados en la XIII Conferencia de las NN. UU. sobre el Clima, que tendrá lugar en diciembre de 2007 en Bali.

Este siglo vivirán en la Tierra unos 9.000 millones de seres humanos y todos exigen su derecho a una vida con dignidad. Para ello necesitan un acceso económico a la energía, que no puede ser asegurado con fuentes fósiles (petróleo, carbón, gas natural), limitadas y desigualmente distribuidas en el mundo. El uso de esos combustibles coadyuva además a desestabilizar el clima global.

¿Cómo romper la rutina de los negocios de corta visión? ¿Cómo redoblar el uso de las energías renovables, utilizar más eficientemente los recursos y acelerar la implementación de las necesarias innovaciones? Y, sobre todo, ¿cómo generar una distribución más justa del bienestar?

Ya ahora, el cambio climático amenaza con deteriorar seriamente las condiciones de vida de muchos seres humanos, sobre todo en países del Sur. Ello sólo puede ser detenido si la comunidad internacional de Estados aprueba y lleva a la práctica medidas eficientes y vinculantes.

Profundizar el Protocolo de Kyoto

Necesario es un nuevo acuerdo climático, que profundice el Protocolo de Kyoto, cuya vigencia termina en el 2012, e incluya también a países emergentes, como India, China y Brasil. Alemania ha lanzado la idea de fijar emisiones per cápita para todos los países del mundo.

El Protocolo de Kyoto, firmado en 1997, cuyo objetivo central es contener las emisiones de los gases que aceleran el calentamiento global, impone a 39 países desarrollados (no así a Brasil, India y China) la contención o reducción de sus emisiones de gases de efecto invernadero. Estados Unidos firmó el acuerdo en 1998, pero luego lo rechazó y hasta hoy se niega a ratificarlo.

En Potsdam participan Premios Nobel como Carlo Rubbia, Mario Molina, Wangari Maathai, Murray Gell-Mann y Sir James Mirrlees, y también conocidos expertos del cambio climático, como Sir Nicholas Stern, Rajenda Pachauri y Sunita Narain.
 
El simposio es organizado por el Instituto de Estudios de las Consecuencias del Cambio Climático, con sede en Potsdam, junto con el World Wide Fund For Nature y un gran apoyo del Ministerio Federal de Educación e Investigación de Alemania.

 

Pablo Kummetz

 
¡Comparta este artículo!
Saludos
Rodrigo González Fernández
DIPLOMADO EN RSE DE LA ONU
www.Consultajuridicachile.blogspot.com
www.lobbyingchile.blogspot.com
www.el-observatorio-politico.blogspot.com
Renato Sánchez 3586
teléfono: 5839786
e-mail rogofe47@mi.cl
Santiago-Chile
 
Soliciten nuestros cursos de capacitación   y asesorías a nivel internacional y están disponibles para OTEC Y OTIC en Chile

José Santamarta Energías Renovables

Energías Renovables

 

Las peores dificultades

nos ofrecen las mejores oportunidades  

 

José Santamarta

 

Introducción

Las energías renovables podrían solucionar muchos de los problemas ambientales, como el cambio climático, los residuos radiactivos, las lluvias ácidas, la pérdida de diversidad biológica y la contaminación atmosférica. Pero para ello hace falta voluntad política y dinero.

En 1996 el consumo mundial de energía superó los 9,800 millones de toneladas equivalentes de petróleo (Mtep): 2,200 Mtep de carbón (22.4%), 3,275 Mtep de petróleo (33.4%), 1,976 Mtep de gas natural (20.1%), 607 Mtep de nuclear (6.2%), 220 Mtep de hidroeléctrica (2.2%) y cerca de 1,500 Mtep de biomasa (15.8%), fundamentalmente leña, y pequeñas cantidades de geotermia, solar y eólica.

La producción, transformación y consumo final de tal cantidad de energía es la causa principal de la degradación ambiental. El consumo está muy desigualmente repartido, pues los países del norte, con el 25% de la población mundial, consumen el 66% de la energía, factor este último a tener en cuenta a la hora de repartir responsabilidades de la crisis ambiental causada por la energía.

La grave crisis ambiental, el agotamiento de los recursos y los desequilibrios entre el norte y el sur, son factores que obligan a acometer una nueva política energética. A corto plazo la prioridad es incrementar la eficiencia energética, pero ésta tiene límites económicos y termodinámicos, por lo que a más largo plazo sólo }el desarrollo de las energías renovables permitirá resolver los grandes retos del futuro, como son el efecto invernadero, los residuos nucleares y las desigualdades.

¿Qué son las energías renovables?

Bajo la denominación de energías renovables, alternativas o blandas, se engloban una serie de fuentes energéticas que a veces no son nuevas, como la leña o las centrales hidroeléctricas, ni renovables en sentido estricto (geotermia), y que no siempre se utilizan de forma blanda o descentralizada, y su impacto ambiental puede llegar a ser importante, como en los embalses para usos hidroeléctricos o los monocultivos para biocombustibles. Actualmente suministran el 18% del consumo mundial (4.3% en la Unión Europea), siendo su potencial enorme, aunque dificultades de todo orden han retrasado su desarrollo en el pasado.

Hoy en día se sabe que en un periodo que no excede los cincuenta años, los mejores recursos petrolíferos y de gas natural estarán casi totalmente agotados, encareciendo y agravando la crisis energética y ambiental. Con la excepción de la geotermia, las energías renovables derivan directa o indirectamente de la energía solar. Directamente en el caso de la luz y el calor producidos por la radiación solar, e indirectamente en el caso de las energías eólica, hidráulica, y biomasa.

Las energías renovables, a lo largo de la historia y hasta bien entrado el siglo diecinueve, han cubierto prácticamente la totalidad de las necesidades energéticas humanas. Sólo en los últimos cien años han sido superadas, primero por el empleo del carbón y, a partir de 1950, por el petróleo y en menor medida por el gas natural; la energía nuclear (434 centrales nucleares con una potencia instalada de 340 Gigavatios) cubre una parte insignificante del consumo mundial y, a pesar de algunas previsiones optimistas, su papel será siempre marginal.

Aún hoy, para más de dos mil millones de personas de los países del sur, la principal fuente energética es la leña, afectada por una auténtica crisis energética, a causa de la desforestación y del rápido crecimiento demográfico. La biomasa, y fundamentalmente la leña, suministra un 15% del consumo mundial, cifra que en los países del sur se eleva al 35% globalmente, aunque en Tanzania llega al 90% y en la India supera el 50%. En el país más rico, Estados Unidos, representa el 4% del consumo global, porcentaje superior al de la energía nuclear. 

El sol sale para todos

La energía solar absorbida por la Tierra en un año es equivalente a 20 veces la energía almacenada en todas las reservas de combustibles fósiles en el mundo y diez mil veces superior al consumo actual. El sol es la única fuente de materia orgánica  y de energía vital en la Tierra y, aunque a veces nos pasa desapercibido, estamos utilizando masivamente la energía solar en forma de alimentos, leña o energía hidroeléctrica. Los mismos combustibles fósiles, cuya quema está en el origen del deterioro ambiental, no son otra cosa que energía solar almacenada a lo largo de millones de años. La fotosíntesis es hoy el empleo más importante de la energía solar, y la única fuente de materia orgánica, es decir, de alimentos y biomasa. Aunque todas las fuentes energéticas, salvo la geotermia y la nuclear, proceden del sol, en la acepción actual el término solar tiene un significado restringido al empleo directo de la energía del sol, ya sea en forma de calor o de luz.

El sol sale para todos cada día y seguirá enviándonos asombrosas cantidades de calor y de energía, ajeno al aprovechamiento que podamos hacer de ella. Su mayor virtud es también su mayor defecto, al tratarse de una forma de energía difusa y poco concentrada. De ahí las dificultades que entraña el aprovechamiento directo de la radiación solar en una sociedad en la que el consumo de energía se concentra en unas pocas fábricas industriales y grandes metrópolis.

La distribución de la radiación solar registra grandes variaciones geográficas, pues va desde dos kwh por m2 y día en el norte de Europa a 8 kwh por m2 en el desierto del Sahara. Igualmente importantes son las variaciones diarias y estacionales de la radiación solar y sus dos componentes, la radiación directa y la difusa. La radiación directa es la recibida del sol cuando el cielo está despejado, y la difusa la que resulta de reflejarse en la atmósfera y las nubes. Algunos equipos utilizan ambas, y otros sólo la directa, como es el caso de las centrales de torre.

El aprovechamiento de la energía solar puede ser indirecto, a través del viento (eólica) y la evaporación del agua (hidráulica), entre otras formas, o directo, mediante la captación térmica activa o pasiva y merced a la captación fotónica. Ejemplos de esta última es la captación fotoquímica que realizan las plantas, el efecto fotoeléctrico, base de las actuales células fotovoltáicas.

Hidrógeno

La producción de hidrógeno por fotolisis es un proceso aún inmaduro tecnológicamente y cuya viabilidad es necesario demostrar, lo que requerirá enormes inversiones en investigación. Si algún día se llegara a producir hidrógeno comercialmente, a precios competitivos, y a partir de dos factores tan abundantes como son el agua y la energía solar, los problemas energéticos y ambientales quedarían resueltos, pues el hidrógeno, a diferencia de otros combustibles, no es contaminante. Otra forma de producir hidrógeno es por electrólisis, pero éste es un proceso que requiere grandes cantidades de electricidad, la cual puede obtenerse merced a las células fotovoltáicas, almacenando de esta forma la energía solar. En cualquier caso en las próximas décadas entraremos en una economía basada en el hidrógeno como combustible secundario; su combustión apenas contamina.

La energía primaria para su obtención será la solar u otras con características similares, como es el caso de la fusión (no la fisión) nuclear, aunque ésta puede plantear graves problemas ambientales, tecnológicos e incluso económicos, al igual que hoy sucede con la fisión del uranio. Los únicos impactos negativos se podrían dar en el caso hipotético de grandes centrales solares en el espacio, y en menor medida en las centrales de torre central, debido al empleo en éstas de sustancias potencialmente contaminantes, utilizadas para la acumulación y transmisión del calor. Otro posible efecto es el uso del territorio, debido a las grandes superficies requeridas, aunque un país como España podría resolver todas sus necesidades de electricidad con apenas 900 km2, el 0.2 % de su territorio.

 

Desde la antigua Grecia a hoy

El uso pasivo de la energía solar se inició en un pasado muy lejano. En la antigua Grecia, Sócrates señaló que la casa ideal debería ser fresca en verano y cálida en invierno, explicando que "en las casas orientadas al sur, el sol penetra por el pórtico en invierno, mientras que en verano el arco solar descrito se eleva sobre nuestras cabezas y por encima del tejado, de manera que hay sombra". En la época de los romanos, la garantía de los derechos al sol quedó incorporada en la ley romana, y así, el código de Justiniano, recogiendo códigos anteriores, señalaba que "si un objeto está colocado en manera de ocultar el sol a un heliocaminus, debe afirmarse que tal objeto crea sombra en un lugar donde la luz solar constituye una absoluta necesidad. Esto es así en violación del derecho del heliocaminus al sol". Arquímedes, 212 años antes de Cristo, según la leyenda, utilizó espejos incendiarios para destruir los barcos romanos que sitiaban Siracusa.   

Roger Bacon, en el siglo trece, propuso al papa Clemente iv el empleo de espejos solares en las cruzadas, pues "este espejo quemaría ferozmente cualquier cosa sobre la que se enfocara. Debemos pensar que el Anticristo utilizará estos espejos para incendiar ciudades, campos y armas". En 1839, el científico francés Edmund Becquerel descubre el efecto fotovoltaico y en 1954 la Bell Telephone desarrolla las primeras células fotovoltáicas, aplicadas posteriormente por la nasa a los satélites espaciales Vanguard y Skylab, entre otros.

La llamada arquitectura bioclimática, heredera del saber de la arquitectura popular, es la adaptación de la edificación al clima local, reduciendo considerablemente el gasto en calefacción y refrigeración, respecto a la actual edificación. Es posible conseguir, con un consumo mínimo, edificios confortables y con oscilaciones de temperatura muy pequeñas a lo largo del año, aunque en el exterior las variaciones climáticas sean muy acusadas. El diseño, la orientación, el espesor de los muros, el tamaño de las ventanas, los materiales de construcción empleados y el tipo de cristales, son algunos de los elementos de la arquitectura solar pasiva, heredera de la mejor tradición arquitectónica. Inversiones que rara vez superan el diez por ciento del costo de la edificación, permiten ahorros energéticos de hasta un 80% del consumo, amortizándose rápidamente el sobrecosto inicial.

El uso de la energía solar en la edificación, presupone la desaparición de una única tipología constructiva, utilizada hoy desde las latitudes frías del norte de Europa hasta el Ecuador. Si la vivienda no se construye adaptada al clima, calentarla o refrigerarla siempre será un grave problema que costará grandes cantidades de energía y dinero.

El colector solar

El colector solar plano, utilizado desde principios de siglo para calentar el agua hasta temperaturas de 80 grados centígrados, es la aplicación más común de la energía térmica del sol. Países como Japón, Israel, Chipre o Grecia han instalado varios millones de unidades, si bien el momento actual de bajos precios del petróleo no es precisamente el más favorable. En muchos países producir agua caliente con colectores solares hoy sale más caro que hacerlo con productos derivados del petróleo, debido, probablemente, a que los colectores solares se hacen de forma artesanal y en pequeñas series, lo que sin duda encarece los costos.

Los elementos básicos de un colector solar plano son la cubierta transparente de vidrio y una placa absorbente, por la que circula el agua u otro fluido caloportador. Otros componentes del sistema son el aislamiento, la caja protectora y un depósito acumulador. Cada metro cuadrado de colector puede producir anualmente una cantidad de energía equivalente a cien kilogramos de petróleo. Las aplicaciones más extendidas son la generación de agua caliente para hogares, piscinas, hospitales, hoteles y procesos industriales, y la calefacción, empleos en los que se requiere calor a bajas temperaturas y que pueden llegar a representar más de una décima parte del consumo.

A diferencia de las tecnologías convencionales para calentar el agua, las inversiones iniciales son elevadas y requieren un periodo de amortización comprendido entre cinco y siete años, si bien, como es fácil deducir, el combustible es gratuito y los gastos de mantenimiento son bajos.

Más sofisticados que los colectores planos son los colectores de vacío y los colectores de concentración, más caros pero capaces de lograr temperaturas más elevadas, lo que permite cubrir amplios segmentos de la demanda industrial e incluso producir electricidad. Los colectores solares de concentración lineal son espejos cilindro parabólicos, que disponen de un conducto en la línea focal por el que circula el fluido caloportador, capaz de alcanzar los 400 grados centígrados. Con tales temperaturas se puede producir electricidad y calor para procesos industriales. En Estados Unidos operan más de cien mil metros cuadrados de concentradores lineales, y la empresa Luz International, lleva ya instaladas en California seis centrales para producir electricidad, con una potencia de 354 mw eléctricos  (1 mw=1000 kw), y unos rendimientos satisfactorios. El costo del kwh asciende a 15 centavos de dólar, todavía superior al convencional, pero interesante en numerosas zonas alejadas de la red de distribución que tengan buena insolación. Las perspectivas son halagüeñas, a pesar de algunos fracasos, como probó la quiebra de luz en 1991 y su posterior venta.

Los colectores puntuales son espejos parabólicos en cuyo foco se dispone un receptor, en el que se produce el calentamiento del fluido de transferencia, posteriormente enviado a una turbina centralizada, o se instala directamente un motor. Más discutibles son las llamadas centrales solares de torre central consistentes en numerosos espejos de gran superficie (helióstatos) que, gracias a la orientación constante, concentran la radiación solar en un receptor de vapor situado en lo alto de una torre. Los resultados obtenidos hasta ahora en las centrales de Almería (España), Solar One en Dagett (Estados Unidos), ces en Crimea y Themis en Francia, entre otras, no son muy alentadores. El desarrollo de heliostatos de bajo costo, utilizando nuevos materiales como el poliéster, la fibra de vidrio o las membranas tensionadas de fibra de grafito y receptores más fiables y eficientes, puede abrir nuevas posibilidades al empleo de la energía solar para la obtención de electricidad.   

Los precios actuales de los colectores solares planos duplican a los de otras fuentes competitivas. Claro que estos costos no toman en consideración los problemas ambientales, la dependencia energética y la necesidad de ir sustituyendo paulatinamente los combustibles fósiles por energías renovables.

Células solares

La producción de electricidad a partir de células fotovoltaicas en 1997 es aún cinco veces más cara que la obtenida en centrales de carbón, pero hace tan sólo una década era dieciocho veces más. En 1960 el costo de instalar un solo vatio de células fotovoltáicas, excluyendo las baterías, transformadores y otros equipos auxiliares, ascendía a dos mil dólares; en 1975 era ya sólo 30 dólares y en 1997 es de cuatro dólares. Si en 1975 el kwh costaba alrededor de diez dólares, el precio actual está entre 24 y 60 centavos de dólar, lo que permite que el empleo de células fotovoltaicas para producir electricidad en lugares alejados de las redes de distribución ya compita con las alternativas existentes, como generadores eléctricos a partir del petróleo.

Hoy, en Estados Unidos la producción de un kwh cuesta de cuatro a ocho centavos de dólar en una central de carbón, de cinco a diez en una de petróleo y de veinticinco a treinta centavos utilizando células fotovoltaicas. En los próximos años se espera reducir el costo del kwh a diez centavos de dólar para antes del año 2002 y a cuatro centavos para el 2030. Claro que en los costos anteriores no se incluyen los resultados del deterioro causado al ambiente por las distintas maneras de producir la electricidad.

El efecto fotovoltaico, descubierto por Becquerel en 1839, consiste en la generación de una fuerza electromotriz en un dispositivo semiconductor, debido a la absorción de la radiación luminosa. Las células fotovoltáicas convierten la energía luminosa del sol en energía eléctrica, con un único inconveniente: el costo económico todavía muy elevado para la producción centralizada. Sin embargo, las células fotovoltáicas son ya competitivas en todos aquellos lugares alejados de la red y con una demanda reducida, como aldeas y viviendas sin electrificar, repetidores de televisión, balizas, agricultura, faros y, últimamente, calculadoras y otros bienes de consumo. A lo largo de toda la década el mercado fotovoltáico creció a ritmos anuales superiores al 40%; entre 1971 y 1995 se han instalado en el mundo 600 megavatios de células fotovoltaicas.

Actualmente la mayoría de las células fotovoltáicas son de silicio monocristalino de gran pureza, material obtenido a partir de la arena, muy abundante en la naturaleza. La purificación del silicio es un proceso muy costoso, debido a la dependencia del mercado de componentes electrónicos, que requiere una pureza (silicio de grado electrónico) superior a la requerida por las células fotovoltaicas. La obtención de silicio de grado solar, directamente del silicio metalúrgico, cuya pureza es del 98%, abarataría considerablemente los costos, al igual que la producción de células a partir del silicio amorfo u otros procedimientos, hoy en avanzado estado de investigación y cuyos resultados pueden ser decisivos en la próxima década. El apoyo institucional, abriendo nuevos mercados, puede acortar el tiempo necesario para la plena competitividad de las células fotovoltáicas.

La superficie ocupada no plantea problemas. Por ejemplo, en el área mediterránea se podrían producir 90 millones de kwh anuales por kilómetro cuadrado de superficie cubierta de células fotovoltáicas, y antes del año 2000, con los rendimientos previstos, se alcanzarán los 150 millones de kwh por km2. Por lo que se refiere al almacenamiento, la producción de hidrógeno por electrólisis y su posterior empleo para producir electricidad u otros usos, puede ser una óptima solución.   

Ríos de energía

La energía hidroeléctrica se genera haciendo pasar una corriente de agua a través de una turbina. La electricidad generada por una caída de agua depende de la cantidad y de la velocidad del agua que pasa a través de la turbina, cuya eficiencia puede llegar al 90%.

El aprovechamiento eléctrico del agua no produce un consumo físico de ésta, pero puede entrar en contradicción con otros usos agrícolas o de abastecimiento urbano y, sobre todo, las grandes centrales tienen un gran impacto ambiental. Las centrales hidroeléctricas en sí mismas no son contaminantes; sin embargo, su construcción produce numerosas alteraciones del territorio y de la fauna y flora: dificulta la migración de peces, la navegación fluvial y el transporte de elementos nutritivos aguas abajo, provoca una disminución del caudal del río, modifica el nivel de las capas freáticas, la composición del agua embalsada y el microclima, y origina la sumersión de tierras cultivables y el desplazamiento forzado de los habitantes de las zonas anegadas. En la mayoría de los casos es la forma más barata de producir electricidad, aunque los costos ambientales no han sido seriamente considerados.

El potencial eléctrico aún sin aprovechar es enorme. Apenas se utiliza el 17% del potencial mundial, con una gran disparidad según los países. Europa ya utiliza el 60% de su potencial técnicamente aprovechable. Al contrario, los países del tercer mundo solamente utilizan del 8% de su potencial hidráulico. Las minicentrales hidroelécticas causan menos daños que los grandes proyectos, y podrían proporcionar electricidad a amplias zonas que carecen de ella.

Energía eólica

La energía eólica es una variante de la energía solar, pues se deriva del calentamiento diferencial de la atmósfera y de las irregularidades de relieve de la superficie terrestre. Sólo una pequeña fracción de la energía solar recibida por la Tierra se convierte en energía cinética del viento y sin embargo ésta alcanza cifras enormes, superiores en varias veces a todas las necesidades actuales de electricidad.

La potencia que se puede obtener con un generador eólico es proporcional al cubo de la velocidad del viento. Al duplicarse la velocidad del viento la potencia se multiplica por ocho, de ahí que la velocidad media del viento sea un factor determinante a la hora de analizar la posible viabilidad de un sistema eólico. La energía eólica es un recurso muy variable, tanto en el tiempo como en el lugar, pudiendo cambiar mucho en distancias muy reducidas. En general, las zonas costeras y las cumbres de las montañas son las más favorables y mejor dotadas para el aprovechamiento del viento con fines energéticos.

La conversión de la energía del viento en electricidad se hace por medio de aerogeneradores, con tamaños que abarcan desde algunos vatios hasta los 4 mil kilovatios (4mw). Los aerogeneradores se han desarrollado intensamente desde la crisis del petróleo en 1973, habiéndose construido desde entonces más de 100 mil máquinas. Actualmente la capacidad instalada asciende a 6 mil mw, equivalente a seis grandes centrales nucleares. Otros países, además de Estados Unidos, han investigado y desarrollado intensamente la energía eólica en los últimos años, destacando Dinamarca, Holanda, Alemania, Italia, India y España.

En 1997 ya es competitiva la producción de electricidad con generadores eólicos de tamaño medio (de 600 kw) y en lugares donde la velocidad media del viento supera los siete metros por segundo. Se espera que dentro de unos pocos años también las máquinas grandes (entre 1 y 2 mw) lleguen a ser rentables. La energía eólica no contamina y su impacto ambiental es muy pequeño comparado con otras fuentes energéticas. De ahí la necesidad de acelerar su implantación en todas las localizaciones favorables, aunque procurando reducir las posibles repercusiones negativas, especialmente en las aves, en algunas localizaciones.

El carbón y, posteriormente, la electricidad dieron al traste con el aprovechamiento del viento hasta la crisis energética de 1973, año en que suben vertiginosamente los precios del petróleo y se inicia el renacimiento de una fuente cuya aportación en las próximas décadas, puede llegar a cubrir una décima parte de las necesidades de electricidad sin cambios en la gestión de la red de distribución. Los costos de la eólica son ya casi competitivos con los de las energías convencionales: mil dólares el kw instalado y entre 7 y 8 centavos el kwh en España, Dinamarca o Estados Unidos.

Para el año 2030 la ewea ha propuesto instalar un total de 100 mil mw en la Unión Europea. Cada kwh eólico permitiría ahorrar un kilogramo de co2, entre otras sustancias contaminantes. Como recordaba la ewea una turbina eólica, con un peso de 50 toneladas, nos ahorrará tener que quemar mil toneladas anuales de carbón, y más de 20 mil toneladas a lo largo de la vida útil del generador eólico.

Energía geotérmica

El gradiente térmico resultante de las altas temperaturas del centro de la Tierra (superiores a los mil grados centígrados), genera una corriente de calor hacia la superficie, que es la fuente de la energía geotérmica. El valor promedio del gradiente térmico es de 25 grados centígrados por cada kilómetro, siendo superior en algunas zonas sísmicas o volcánicas. Los flujos y gradientes térmicos anómalos alcanzan valores máximos en zonas que representan cerca de la décima parte de las tierras emergidas: costa del Pacífico en América, desde Alaska hasta Chile, occidente del Pacífico, desde Nueva Zelanda a Japón, el este de África y alrededor del Mediterráneo. El potencial geotérmico almacenado en los diez kilómetros exteriores de la corteza terrestre supera en 2 mil veces a las reservas mundiales de carbón.

La explotación comercial de la geotermia, al margen de los tradicionales usos termales, comenzó a finales del siglo diecinueve en Lardarello, Italia, con la producción de electricidad. Hoy son ya 17 los países que generan electricidad a partir de la geotermia, con una capacidad instalada de 6 mil mw, equivalente a seis centrales nucleares de tamaño grande. Estados Unidos, Filipinas, México, Italia y Japón, en este orden, son los países con mayor producción geotérmica.

Actualmente, una profundidad de perforación de 3 mil metros constituye el máximo económicamente viable. Otra de las limitaciones de la geotermia es que las aplicaciones de ésta, electricidad o calor para calefacciones e invernaderos, deben encontrarse en las proximidades del yacimiento en explotación. La geotermia puede llegar a causar algún deterioro al ambiente, aunque la reinyección del agua empleada en la generación de electricidad minimiza los posibles riesgos. Los países con mayores recursos, en orden de importancia, son China, Estados Unidos, Canadá, Indonesia, Perú y México.

Biomasa

La utilización de la biomasa es tan antigua como el descubrimiento y el empleo del fuego para calentarse y preparar alimentos, utilizando la leña. Aún hoy, la biomasa es la principal fuente de energía para usos domésticos empleada por más de 2,500 millones de personas en el tercer mundo.

Los empleos actuales son la combustión directa de la leña y los residuos agrícolas, la producción de carbón vegetal y la producción de alcohol como combustible para los automóviles en Brasil. Los recursos potenciales son ingentes, superando los 120 mil millones de toneladas anuales, recursos que en sus dos terceras partes corresponden a la producción de los bosques.

¿Es la biomasa una energía alternativa? A lo largo y ancho del planeta el consumo de leña está ocasionando una desforestación galopante. En el caso del Brasil se ha criticado el empleo de gran cantidad de tierras fértiles para producir alcohol que sustituya a la gasolina en los automóviles, cuando la mitad de la población de aquel país está subalimentada. Por otra parte, la combustión de la biomasa es contaminante. En el caso de la incineración de basuras, tal y como se viene haciendo con los residuos urbanos en la mayoría de las ciudades europeas y estadounidenses, la combustión emite a la atmósfera contaminantes, algunos de ellos cancerígenos, como las dioxinas. También es muy discutible el uso de tierras fértiles para producir energía en vez de alimentos, tal y como se está haciendo en Brasil, o el empleo de leña sin proceder a reforestar las superficies taladas.

El reciclaje y la reutilización de los residuos permitirá mejorar el medio ambiente, ahorrando importantes cantidades de energía y de materias primas, a la vez que se trata de suprimir la generación de residuos tóxicos y de reducir los envases. La incineración no es deseable, y probablemente tampoco la producción de biocombustibles, dadas sus repercusiones sobre la diversidad biológica, los suelos y el ciclo hidrológico.

 

Bibliografía

Boyle, G. et al. Renewable energy. Power for a sustainable future. Oxford University Press. Oxford, 1996.

Goldemberg et al. Energy for a sustainable world. John Wiley and sons. Nueva Delhi, 1988

Goldemberg, J. Energy, environment and development. Earthscan. Londres, 1996.

Johansson, T. B. et al. Renewable energy. Island Press. Washington, 1993.

Flavin, C. y N. Lenssen. Power surge. A guide to the coming energy revolution. Earthscan. Londres, 1995.

D. Deudney y C. Flavin. Renewable energy: The power to choose. Norton. Nueva York, 1983.

Ogden, J.M. y R. H. Williams. Solar hydrogen. Moving beyond fossil fuels. World Resources Institute. Washington, 1989.

Leggett et al. Global warming. The Greenpeace report. Oxford University Press. Oxford, 1990.

Santamarta, J. Las energías renovables en España. Greenpeace. Madrid, 1991.

ewea. Wind energy in Europe. Time for action. Bristol. 1990.

 

 

Acerca del autor

José Santamarta Flores es licenciado en Filosofía y Letras, y en Ciencias Económicas y empresariales, en la Universidad Complutense de Madrid.

Autor o coautor de estudio  del sector energético en la provincia de Madrid, Modelo energético de tránsito, El consumo de energía en España, Inventario de los recursos de Navarra. Plan de gestión energética, Energía y vivienda en España, Balances energéticos regionales, El sector energético en España y Estructura energética de los entes autónomos.

Ha realizado varios estudios energéticos regionales como Coyuntura de los sectores de la actividad económica de Madrid, La actividad económica madrileña, La influencia de la crisis económica sobre el territorio, Análisis sectorial de los empleos energéticos y del comercio exterior, Posibilidades de las energías renovables, Bases para una política regional de suelo industrial, El sector energético en la comunidad de Madrid, Análisis estructural de los sectores del metal, automoción y reparación de automóviles, Balances energéticos de las comunidades autónomas; Adaptación del modelo medee de previsión de la demanda de energía, Ayudas del estado a los sectores energéticos en España, Italia y Portugal, Energías renovables. Ha hecho trabajos en relación con el estudio Proyecto Mure II, apoyado por la ce; y Alternativas energéticas al cambio climático, efectos sobre el empleo.

Se ha desempeñado  como consultor en temas ambientales para la Unión Europea y el Banco Mundial de 1994 a 1996. Es director de la revista Gaia, especializada en temas ambientales, desde 1993, y también es director de la edición en español de la revista World Watch, especializada en temas de medio ambiente y desarrollo, desde 1996.

Aunque José ha residido siempre en España, tiene una especial sensibilidad para la correcta comprensión de los problemas latinoamericanos. Es, además de todo un intelectual, un aguerrido activista, muy generoso en todos los planos.

 

Qué podemos hacer

Cuando construyas tu vivienda utiliza ecotecnologías que ahorran energía.

Haz un reglamento en tu hogar y oficina, para que todos lo acaten y no despilfarren la electricidad, el agua, el gas, etcétera.  Recompénsalos cuando ahorren energéticos.

Apaga los focos, radio, televisión, tocadiscos, etcétera,  siempre que salgas de una habitación.

Empieza  poco a poco a cambiar los focos de tu hogar y oficina por aquellos que consumen menos energía y alumbran igual.

Si vives en un clima muy frío o caliente,  si utilizas aire acondicionado tapa todas las ranuras para que el aire no escape.

No utilices el aire acondicionado o la calefacción, a menos de que en verdad sea necesario.

Durante los días muy calientes cierra las cortinas, durante los días muy fríos corre las cortinas y permite el paso del sol.

Remoja tu ropa antes de lavarla, evitarás usar agua caliente y el consiguiente uso de gas o electricidad.

Para cocinar utiliza ollas y sartenes tan pequeños como puedas, tápalos de preferencia.

La olla de presión ahora mucho gas, si tienes una  ¡úsala!

Descongela los alimentos con tiempo suficiente en el refrigerador, ¿sabes? ésto proporciona frío al mismo y ahorras energía.

No abras y cierres el refrigerador a cada momento, piensa antes de abrirlo que vas a sacar.

Reemplaza los productos que sean eléctricos por manuales como los abridores de latas, cepillos de dientes, sacapuntas, cuchillos, etcétera.

Cuando laves la ropa, tiéndela de forma que requiera menor uso de la plancha. 

Escribe a todas las Universidades mexicanas que  puedas para pedirles que se abran  más proyectos de investigación  y prácticas sobre energías alternativas y renovables.

Escribe al Congreso de la Unión y pídeles que se hagan leyes para el ahorro de energía.

Si ahorras agua, también ahorras energía. ¿Sabes lo que cuesta bombear el agua hasta la ciudad de México?

Suscríbete a la revista del Fide, Fideicomiso de ahorro de energía eléctrica, ¡entérate!

Para saber más

Santamarta, J. Las energías renovables en España. una opción de futuro. Greenpeace. Salvat. Madrid, España. 1991.

Balam, M. S, Sanchez  y Kreiner.Energía solar interesante alternativa. Teorema. México, df. 1996

Teorema  La energía eólica. energéticos. 1994.

Toledo, A. Energía, Ambiente y desarrollo. Centro de ecodesarrollo. Serie medio ambiente en Coatzoacoalcos. México. 1988.

unep Renewable sources of energy. unep. (Energy report series), 1980.

Illich, Iván. Energía y equidad. Posada, México 1977.

Fernández J.L. y V. Estrada  Cálculo de la radiación solar instantánea en la República Mexicana sometido para su publicación en las Series del Instituto de Ingeniería, unam, México.

Viqueira J. México en la encrucijada energética. Editia Mexicana, sa 1981.

Plan de expansión del sector eléctrico  al año 2,000: Tomos I y II segunda edición. Gerencia General de Estudios e Ingeniería Preliminar, Comisión Federal de Electricidad, México, 1978.

Lovins, Armory and his critics.  The energy controversy. Hugh Nash,Friends of the Earth. usa 1979.

Energía para el mañana. Conferencia sobre energía y equidad para un mundo sostenible Los libros de la catarata. Aedenat. Madrid, 1993

Stobaugh R. y D. Yergin. Energía del futuro. Informe de la Harvard Business School. Compañía Editorial Continental, sa de cv, México.

Concheiro, A.A. y L.R. Viqueira. Alternativas Energéticas Fondo de Cultura Económica, México. 1985.

Paul, T.D. How to Desing an Independent Power System, Best energy Systems for Tomorrow Inc., Necedah, 1981.

Idae Guías de energías renovables 1981-1991.  Instituto para la Diversificación y Ahorro de Energía, Madrid, 1989-1991.

Georgescu- Roegen, N. Energy and economic myths. Ecologist. 1975.

ciemat. Fundamentos, dimensionado y aplicaciones de la energía solar fotovoltáica. Madrid, España. 1992.

ciemat. La biomasa como fuente de energía y productos para la agricultura y la industria. Madrid. 1990.

Con quién y a dónde acudir

Fideicomiso de apoyo al programa de ahorro de energía   (fide)

León Tolstoi 22 - 4º piso col. Anzures  cp 11590 México, df.

Tel. 525 06 40

Grupo Cygnus sc - Consultores en energía

Roberto Martín

Privada Ayuntamiento 13 Col. Miguel Hidalgo cp 14260 México, df.

Tels. 528 47 57   528 52 88   Fax 606 69 52

Energía alternativa

José Santamarta F.

Gobernador 3- 3º piso cp 28014 Madrid, España

Tel. 001 (341) 429 37 74   Fax 001 (341) 5 31 26 11

Ecosolar

Eugenia 1510 col. Narvarte cp 03020 México, df.

Tels. 543 44 31   523 05 55   543 44 31

Ecored

Patriotismo 334- 5º piso col. San Pedro de los Pinos cp 3800 México, df

Tels. 277 58 44   277 32 32  277 35 55

Consejo nacional de ciencia y tecnología (conacyt)

Av. Constituyentes 1046 col. Lomas Altas cp 11950 México, df.

Tels. 327 74 59   327 74 00 ext. 7280   Fax 327 76 53

Correo electrónico: urbano@mailer.main.conacyt.mx

Ecoltec, sa de cv

Montes Urales 760-3º piso col. Las Lomas cp 11000, México, df

Tel. 202 84 74   202 97 83   Fax 596 83 80

Termoquím sa de cv

San Marcos 102 Tlalpan cp 14000 México, df.

Tel. 655 91 44

Energía y Ecología sa de cv

Coronel Ahumada 46 Lomas del Mirador cp 622350 Cuernavaca Morelos

Tel/fax 01 (73) 15 85 65

Ecothec inc

Av Río Mixcoac 66-702 Col. del Valle cp 03100 México, df

Tels. 5345145   534 4600   Fax  5240740

Ecothec. consultores sa de cv

Av. Colonia del Valle 528-402 col. del Valle cp 03100 México, df

Tel. 543 28 55  Fax 543 15 43

Ingeniería y procesamiento electrónico sa de cv

San Lorenzo 153 Col. del Valle cp 03100 México, df.

Tel. 575 40 77

Instituto de  Ingeniería unam. Ingeniería ambiental

Ciudad Universitaria  cp 04510 México, df

Tels. 622 33 20   622 33 23  

uam/Azcapotzalco

Departamento de Energía

Av. San Pablo 180 col. Reynosa Tamaulipas cp 02200 México, df

Tels. 7244280

Greenpeace México

Av. Cuauhtémoc 946 col. Narvarte cp 3020 México, df

Greenpeace Action

1436 U st. nw suite 201-A

Washington, dc 20009

Tel. (202) 462 88 17

Nuclear information and resource service

1424 16th st., nw suite 601

Washington, dc 20036

Tel. (202) 328 00 02

Worldwatch Institute

1776 Massachusetts Ave., nw.

Washington, dc 20036

Tel. 001 (202) 452 19 99

Safe energy communication council

1717 Massachusetts Ave. nw

LL215, Washington, dc 20036

Tel. (202) 483 84 91

Asociación americana de hidrógeno. Combustibles alternativos.

Web:         http://solstice.crest.org/online/aseguide/

Energía del hidrógeno

Web:        http://www-unix.oitumass.edu/ mellis/ hydrogen/hydrogen.html

Energía del viento

Web:             http://www.sln.og/tfi/wind/windguide.html

Energía nuclear

Web:              http://nuke.handheld.com/       http://www.nrc.gov.

Energía renovable

            Web:             http://www.nrel.gov/

Usenet:       alt.energy.renewable

Energía solar

Web:        http://www-lips.ece.utexas.edu/ delayman/solar.html

http://www.netins.net/showcase/solarcatalog

Usenet:            alt.solar.photovoltaic

alt.solar.thermal

Estadísticas mundiales sobre energía

Web:        http://www.energyinfo.co.uk/wstats.html

Gas natural

Web:       http://solstice.crest.org/renewable/eerg/natgas_index.html

http://www.cng.com/html/ngv.htm

Hidroelectricidad

Web:       http://starfire.en.uiuc.edu/ne201/webproject/buntic

Hogares con energía eficiente

Web:       http://www.nimo.com/HEEG/

http://www.wpl.com/ps/bihome.html

Usenet:            alt.hvac

sci.engr.heat-vent-ac

Información educativa sobre la energía.

Web:       http://www.energy.ca.gov/energy/education

             

Para la discusión y el análisis

·      Los países del hemisferio norte, consumen el 66% de la energía, lo que significa que tienen una cuota mayor de responsabilidad en la crisis mundial ambiental;  en México la clase media y alta aque es aproximadamente el 25% de la población, consumen también el 66% de la energía producida en nuestro país.  ¿Qué opinas de estas inequidades?

 

·      ¿Por qué crees que en México no se han diversificado las fuentes de energía?

 

·      Existen muchos poblados rurales que aún no tienen electricidad convencional. ¿Por qué no se les proporciona electricidad con energías alternativas?

 

·      ¿Por qué el gobierno no realiza una campaña permanente, enérgica y masiva  sobre el ahorro de energía?

 

·      ¿Cuál es el energético que más contamina?

 

·      ¿Qué opinas de la Planta Nuclear de Laguna Verde?

 

·      ¿Qué opinas de que muchos edificios públicos permanecen con los focos encendidos toda la noche?

 

·      Sabías que la principal aportación a las emisiones domésticas de dióxido de carbono proviene del uso de electrodomésticos, el segundo es la calefacción y el tercero es el agua caliente sanitaria y por cocinar.  ¿Estarías dispuesto a realizar un plan en tu hogar para ser más eficiente y reducir tu consumo?

 

·      Investiga cuál es actualmente  la intensidad energética en México. Decide por ti mismo si nuestro país tiene una política eficiente de energéticos.

 

·      Lee el ensayo sobre cambio climático, ahí encontrarás más información.

Saludos
Rodrigo González Fernández
DIPLOMADO EN RSE DE LA ONU
www.Consultajuridicachile.blogspot.com
www.lobbyingchile.blogspot.com
www.el-observatorio-politico.blogspot.com
Renato Sánchez 3586
teléfono: 5839786
e-mail rogofe47@mi.cl
Santiago-Chile
 
Soliciten nuestros cursos de capacitación   y asesorías a nivel internacional y están disponibles para OTEC Y OTIC en Chile

El biogás europeo alcanza los 5,3 millones de tep

Biomasa
El biogás europeo alcanza los 5,3 millones de tep

23 de julio de 2007

Presentados los datos preliminares para 2006, que muestran un crecimiento del 13,6% con respecto al año anterior. Los depósitos de vertederos representan la mayor parte de la producción.

En 2006, la producción de biogás en Europa alcanzó casi los 5,3 millones de toneladas equivalente petróleo. Así queda reflejado en el último barómetro del EurObserv'ER, que indica que esto supone un crecimiento del 13,6% con respecto a 2005. Según los datos aportados por este organismo europeo, esta cifra comprende únicamente la producción destinada a ser valorizada y no incluye el biogás quemado en antorcha. Al igual que en el 2005, los depósitos de los vertederos representan la parte más significativa de la producción (3.116,2 ktep). Sin embargo, la mayoría del biogás de metanización ya no está representado por las estaciones de depuración, pero por la categoría «otros biogases», que comprende el biogás agrícola, el biogás de unidades colectivas de codigestión y de tratamiento de deshechos domésticos. La producción bruta de electricidad proveniente del biogás está en fuerte alza (+ 28,9%, es decir un total de 17,3 TWh), particularmente gracias a un aumento de la electricidad producida en instalaciones de cogeneración, la cual es por primera vez más importante que la electricidad producida sola.

En Alemania, país líder también en este sector, el desarrollo actual de la energía primaria que proviene del biogás resulta principalmente de la producción de electricidad de pequeñas plantas de metanización agrícolas de cogeneración. La producción de energía primaria alcanzó más de 1,9 Mtep, principalmente valorizadas en forma de electricidad (7,3 TWh).

Más información:
http://www.energies-renouvelables.org/
Saludos
Rodrigo González Fernández
DIPLOMADO EN RSE DE LA ONU
www.Consultajuridicachile.blogspot.com
www.lobbyingchile.blogspot.com
www.el-observatorio-politico.blogspot.com
Renato Sánchez 3586
teléfono: 5839786
e-mail rogofe47@mi.cl
Santiago-Chile
 
Soliciten nuestros cursos de capacitación   y asesorías a nivel internacional EN BIOCOMBUSTIBLES  y están disponibles para OTEC Y OTIC en Chile

Medio ambiente

Medio ambiente

LAS ENERGÍAS RENOVABLES SON EL FUTURO
lunes, 15 de noviembre de 2004

La edad de piedra no acabó por falta de piedras, y la era de los combustibles fósiles tampoco terminará por el agotamiento del petróleo, el gas natural y el carbón. Las energías renovables solucionarán muchos de los problemas ambientales, como el cambio climático, los residuos radiactivos, las lluvias ácidas y la contaminación atmosférica. Pero para ello hace falta voluntad política y dinero. En 2003 el consumo mundial de energía superó los 10.500 millones de toneladas equivalentes de petróleo (Mtep): 2.400 Mtep de carbón, 3.600 Mtep de petróleo, 2.300 Mtep de gas natural, 610 Mtep de nuclear, 590 Mtep de hidroeléctrica y cerca de 950 Mtep de biomasa, fundamentalmente leña, y cantidades aún pequeñas de geotermia, solar y eólica.

La producción, transformación y consumo final de tal cantidad de energía es la causa principal de la degradación ambiental. El consumo está muy desigualmente repartido, pues los países de la OCDE, con el 15% de la población mundial, consumen el 60% de la energía, factor este último a tener en cuenta a la hora de repartir responsabilidades de la crisis ambiental.
El consumo de energía primaria en España ha pasado de 88 Mtep en 1990 a 132,6 Mtep en el año 2003 (un 50,7% de aumento), año en el que la dependencia energética alcanzó el 78%, a pesar de que en la producción nacional se incluye por razones metodológicas muy discutibles la energía nuclear. Si se cumplen las previsiones del anterior gobierno del PP las emisiones de dióxido de carbono de origen energético aumentarán un 58% entre 1990 y 2010, en el escenario más favorable, lo que hace matemáticamente imposible cumplir el Protocolo de Kioto. La producción, transformación y uso final de tal cantidad de energía también en España es la causa principal de la degradación ambiental: 9 centrales nucleares en funcionamiento y una cerrada definitivamente, un grave problema de residuos radiactivos sin resolver, cerca de un millar de embalses que han anegado de forma irreversible 3.000 kilómetros cuadrados, y las emisiones de gases de invernadero, que representan el 77,73% del total. Además se emiten 2,4 millones de toneladas de dióxido de azufre y 1,3 millones de toneladas de óxidos de nitrógeno. Al ritmo actual de extracción, las reservas estimadas de carbón durarán 1.500 años, las de gas natural 120 y las de petróleo no menos de 60 años. La mejora de las tecnologías de extracción incrementará la duración de las reservas, al acceder a las zonas marítimas profundas. No existe un problema de agotamiento de los combustibles fósiles en un horizonte inmediato, aunque el consumo actual es 100.000 veces más rápido que su velocidad de formación; la verdadera cuestión es la de los sumideros, como la atmósfera, donde se acumula el dióxido de carbono y otros gases de invernadero, con el subsiguiente calentamiento. Los altos precios del petróleo agravan la situación, aunque conviene recordar que son muy inferiores a los de 1980, año en que se llegó a 80 dólares el barril a precios actuales, pasando el dólar de entonces al de hoy, teniendo en cuenta la inflación. La grave crisis ambiental, el agotamiento de los recursos y los desequilibrios entre el Norte y el Sur, son factores que obligan a acometer una nueva política energética. A corto plazo la prioridad es incrementar la eficiencia energética, pero ésta tiene unos límites económicos y termodinámicos, por lo que a más largo plazo sólo el desarrollo de las energías renovables permitirá resolver los grandes retos del futuro. Las energías renovables son la única solución sostenible, y la energía nuclear, de fisión o fusión, sólo agravaría la situación y conducen a un camino sin salida, de proliferación nuclear y generación de residuos radiactivos. ¿Qué son las energías renovables?Bajo la denominación de energías renovables, alternativas o blandas, se engloban una serie de fuentes energéticas que a veces no son nuevas, como la leña o las centrales hidroeléctricas, ni renovables en sentido estricto (geotermia), y que no siempre se utilizan de forma blanda o descentralizada, y su impacto ambiental puede llegar a ser importante, como los embalses para usos hidroeléctricos o los monocultivos de biocombustibles. Actualmente suministran un 20% del consumo mundial (las estadísticas no suelen reflejar su peso real), siendo su potencial enorme, aunque dificultades de todo orden han retrasado su desarrollo en el pasado.
Con la excepción de la geotermia, la totalidad de las energías renovables derivan directa o indirectamente de la energía solar. Directamente en el caso de la luz y el calor producidos por la radiación solar, e indirectamente en el caso de las energías eólica, hidráulica, mareas, olas y biomasa, entre otras. Las energías renovables, a lo largo de la historia y hasta bien entrado el siglo XIX, han cubierto la práctica totalidad de las necesidades energéticas del hombre. Sólo en los últimos cien años han sido superadas, primero por el empleo del carbón, y a partir de 1950 por el petróleo y en menor medida por el gas natural. La energía nuclear, con 441 centrales nucleares en 2003, con una potencia instalada de 360 GW, cubre una parte insignificante del consumo mundial, y a pesar de algunas previsiones optimistas, su papel será siempre marginal. Aún hoy, para más de dos mil millones de personas de los países del Sur, la principal fuente energética es la leña, afectada por una auténtica crisis energética, a causa de la deforestación y del rápido crecimiento demográfico. La biomasa, y fundamentalmente la leña, suministra un 14% del consumo mundial, cifra que en los países del Sur se eleva al 35% globalmente, aunque en Tanzania llega al 90% y en India supera el 50%; en el país más rico, Estados Unidos, representa el 4% del consumo global, porcentaje superior al de la energía nuclear, en la Unión Europea el 3,7% y en España el 3%. En 1999 se aprobó el Plan de Fomento de las Energías Renovables en España, donde se establecían los objetivos para el año 2010. Dado el desarrollo actual, el Plan no se cumplirá, aunque el IDAE ha revisado al alza los objetivos e intenta crear las condiciones que permitan recuperar el tiempo perdido. Las energías renovables en el año 2003 representaron el 6% del consumo de energía primaria, cifra muy alejada del 12% que se quiere alcanzar en 2010. El Plan de 1999 y la Directiva 2001/77/CE prevén producir el 29,4% del total de la electricidad en 2010 con renovables. El sol sale para todosLa energía solar absorbida por la Tierra en un año es equivalente a 20 veces la energía almacenada en todas las reservas de combustibles fósiles en el mundo y diez mil veces superior al consumo actual. El sol es la única fuente de materia orgánica y de energía vital de la Tierra, y aunque a veces nos pasa desapercibido, ya hoy estamos utilizando masivamente la energía solar, en forma de alimentos, leña o energía hidroeléctrica. Los mismos combustibles fósiles, cuya quema está en el origen del deterioro ambiental, no son otra cosa que energía solar almacenada a lo largo de millones de años. La fotosíntesis es hoy el empleo más importante de la energía solar, y la única fuente de materia orgánica, es decir, de alimentos y biomasa. Aunque todas las fuentes energéticas, salvo la geotermia y la nuclear, proceden del sol, en la acepción actual el término solar tiene un significado restringido al empleo directo de la energía del sol, ya sea en forma de calor o de luz. El sol sale para todos cada día y seguirá enviándonos asombrosas cantidades de calor y de energía, ajeno al aprovechamiento que podamos hacer de ella. Su mayor virtud es también su mayor defecto, al tratarse de una forma de energía difusa y poco concentrada, y de ahí las dificultades que entraña el aprovechamiento directo de la radiación solar, en una sociedad en la que el consumo de energía se concentra en unas pocas fábricas industriales y grandes metrópolis. La distribución de la radiación solar registra grandes variaciones geográficas, pues va desde dos kWh por m2 y día en el norte de Europa a 8 kWh por m2 en el desierto del Sahara. Igualmente importantes son las variaciones diarias y estacionales de la radiación solar, y sus dos componentes, la radiación directa y la difusa. La radiación directa es la recibida del sol cuando el cielo está despejado, y la difusa la que resulta de reflejarse en la atmósfera y las nubes. Algunos equipos utilizan ambas, y otros sólo la directa, como es el caso de las centrales de torre.
El aprovechamiento de la energía solar puede ser indirecto, a través del viento (eólica) y la evaporación del agua (hidráulica), entre otras formas, o directo, mediante la captación térmica activa o pasiva y merced a la captación fotónica. Ejemplo de esta última es la captación fotoquímica que realizan las plantas, y el efecto fotoeléctrico, origen de las actuales células fotovoltaicas. Los únicos impactos negativos se podrían dar en el caso hipotético de grandes centrales solares en el espacio, y en menor medida en las centrales de torre central, debido al empleo en éstas de sustancias potencialmente contaminantes, utilizadas para la acumulación y transmisión del calor. Otro posible efecto es el uso del territorio, debido a las grandes superficies requeridas, aunque un país como España podría resolver todas sus necesidades de electricidad con apenas 1.000 km2, el 0,2 % de su territorio. HidrógenoLa producción de hidrógeno es un proceso aún inmaduro tecnológicamente y costoso, por lo que se requerirán enormes inversiones en investigación. Cuando se llegue a producir hidrógeno comercialmente, dentro de 10 o 20 años, y a partir de factores tan abundantes como son el agua y la energía solar y eólica, los problemas energéticos y ambientales quedarán resueltos, pues el hidrógeno, a diferencia de otros combustibles, no es contaminante. El hidrógeno se produce por electrólisis, proceso que requiere grandes cantidades de electricidad, la cual puede obtenerse merced a las células fotovoltaicas y a los aerogeneradores, almacenando de esta forma la energía solar y eólica. En cualquier caso en las próximas décadas entraremos en una economía basada en el hidrógeno como combustible secundario o vector energético; su combustión apenas contamina. La energía primaria para su obtención será la solar y la eólica, y la conversión se hará en pilas de combustible, lo que supondrá una gran revolución. Hacia el año 2020 se espera que la mayor parte de los vehículos funcionen con pilas de combustible.
Desde la antigua Grecia a hoyEl uso pasivo de la energía solar se inició en un pasado muy lejano. En la antigua Grecia Sócrates señaló que la casa ideal debería ser fresca en verano y cálida en invierno, explicando que "en las casas orientadas al sur, el sol penetra por el pórtico en invierno, mientras que en verano el arco solar descrito se eleva sobre nuestras cabezas y por encima del tejado, de manera que hay sombra". En la época de los romanos, la garantía de los derechos al sol quedó incorporada en la ley romana, y así, el Código de Justiniano, recogiendo códigos anteriores, señalaba que "si un objeto está colocado en manera de ocultar el sol a un heliocaminus, debe afirmarse que tal objeto crea sombra en un lugar donde la luz solar constituye una absoluta necesidad. Esto es así en violación del derecho del heliocaminus al sol". Arquímedes, 212 años antes de Cristo, según la leyenda, utilizó espejos incendiarios para destruir los barcos romanos que sitiaban Siracusa. Roger Bacon, en el siglo trece, propuso al Papa Clemente IV el empleo de espejos solares en las Cruzadas, pues "este espejo quemaría ferozmente cualquier cosa sobre la que se enfocara. Debemos pensar que el Anticristo utilizará estos espejos para incendiar ciudades, campos y armas". En 1839, el científico francés Edmund Becquerel descubre el efecto fotovoltaico y en 1954 la Bell Telephone desarrolla las primeras células fotovoltaicas, aplicadas posteriormente por la NASA a los satélites espaciales Vanguard y Skylab, entre otros. La llamada arquitectura bioclimática, heredera del saber de la arquitectura popular, es la adaptación de la edificación al clima local, reduciendo considerablemente el gasto en calefacción y refrigeración, respecto a la actual edificación. Es posible conseguir, con un consumo mínimo, edificios confortables y con oscilaciones de temperatura muy pequeñas a lo largo del año, aunque en el exterior las variaciones climáticas sean muy acusadas. El diseño, la orientación, el espesor de los muros, el tamaño de las ventanas, los materiales de construcción empleados y el tipo de acristalamiento, son algunos de los elementos de la arquitectura solar pasiva, heredera de la mejor tradición arquitectónica. Inversiones que rara vez superan el cinco por ciento del coste de la edificación, permiten ahorros energéticos de hasta un 80% del consumo, amortizándose rápidamente el sobrecoste inicial. El uso de la energía solar en la edificación presupone la desaparición de una única tipología constructiva, utilizada hoy desde las latitudes frías del norte de Europa hasta el Ecuador. Si la vivienda no se construye adaptada al clima, calentarla o refrigerarla siempre será un grave problema que costará grandes cantidades de energía y dinero.
El colector solarEl colector solar plano, utilizado desde principios de siglo para calentar el agua hasta temperaturas de 80 grados centígrados, es la aplicación más común de la energía térmica del sol. Países como Alemania, Austria, Japón, Israel, Chipre o Grecia han instalado varios millones de unidades.
Los elementos básicos de un colector solar plano son la cubierta transparente de vidrio y una placa absorbente, por la que circula el agua u otro fluido caloportador. Otros componentes del sistema son el aislamiento, la caja protectora y un depósito acumulador. Cada metro cuadrado de colector puede producir anualmente una cantidad de energía equivalente a unos ochenta kilogramos de petróleo.
Las aplicaciones más extendidas son la generación de agua caliente para hogares, piscinas, hospitales, hoteles y procesos industriales, y la calefacción, empleos en los que se requiere calor a bajas temperaturas y que pueden llegar a representar más de una décima parte del consumo. A diferencia de las tecnologías convencionales para calentar el agua, las inversiones iniciales son elevadas y requieren un periodo de amortización comprendido entre 5 y 7 años, si bien, como es fácil deducir, el combustible es gratuito y los gastos de mantenimiento son bajos.
Más sofisticados que los colectores planos son los colectores de vacío y los colectores de concentración, más caros, pero capaces de lograr temperaturas más elevadas, lo que permite cubrir amplios segmentos de la demanda industrial e incluso producir electricidad. Los colectores solares de concentración lineal son espejos cilindroparabólicos, que disponen de un conducto en la línea focal por el que circula el fluido caloportador, capaz de alcanzar los 400 grados centígrados. Con tales temperaturas se puede producir electricidad y calor para procesos industriales. En Estados Unidos operan más de cien mil metros cuadrados de concentradores lineales, y la empresa "Luz Internacional" instaló en California seis centrales para producir electricidad, con una potencia de 354 MW eléctricos (1 MW=1.000 kW), y unos rendimientos satisfactorios. El coste del kWh asciende a 15 céntimos de dólar, todavía superior al convencional, pero interesante en numerosas zonas alejadas de la red de distribución que tengan buena insolación. Las perspectivas son halagüeñas, a pesar de algunos fracasos, como probó la quiebra de Luz en 1991 y su posterior venta, y hoy hay varios proyectos en marcha en España e India, entre otros países. El plan del gobierno prevé producir 180 ktep en el año 2010 de solar termoeléctrica, con una potencia instalada de sólo 200 megavatios y una producción de 458,9 GWh/año. Los colectores puntuales son espejos parabólicos en cuyo foco se dispone un receptor, en el que se produce el calentamiento del fluido de transferencia, posteriormente enviado a una turbina centralizada, o se instala directamente un motor. Las llamadas centrales solares de torre central consisten en numerosos espejos de gran superficie (helióstatos) que, gracias a la orientación constante, concentran la radiación solar en un receptor de vapor situado en lo alto de una torre. El desarrollo de helióstatos de bajo coste, utilizando nuevos materiales como el poliéster, la fibra de vidrio o las membranas tensionadas de fibra de grafito y receptores más fiables y eficientes, abre nuevas posibilidades al empleo de la energía solar para la obtención de electricidad.
En España queda mucho por hacer en energía solar. Mientras que en el año 2002 sólo teníamos 522.561 metros cuadrados de colectores solares, en Alemania, con mucho menos sol y menos superficie, ¡tenían 3.365.000 metros cuadrados ya en 2000! En Grecia tenían 2.460.000 metros cuadrados y en Austria 2.170.000 metros cuadrados. Los objetivos son llegar a 336 ktep en 2010, instalando un total de 4.500.000 metros cuadrados adicionales. Las nuevas normativas municipales, que obligan a instalar colectores solares en todas las viviendas de nueva construcción o grandes rehabilitaciones, permitirán relanzar un mercado con enorme futuro. La demanda potencialmente atendible con colectores solares planos asciende a 6,1 Mtep. Células solaresLa producción de electricidad a partir de células fotovoltaicas es aún seis veces más cara que la obtenida en centrales de carbón, pero hace tan sólo dos décadas era veinte veces más. En 1960 el coste de instalar un solo vatio de células fotovoltaicas, excluyendo las baterías, transformadores y otros equipos auxiliares, ascendía a 2.000 dólares; en 1975 era ya sólo 30 dólares y en 2004 va de 2,62 dólares a 4,25, dependiendo de la cantidad y el tipo de instalación. Si en 1975 el kWh costaba más de 7 euros, el precio actual está entre 0,3 y 0,6 euros, lo que permite que el empleo de células fotovoltaicas para producir electricidad en lugares alejados de las redes de distribución ya compita con las alternativas existentes, como generadores eléctricos a partir del petróleo. Hoy, en Estados Unidos la producción de un kWh cuesta de 4 a 8 céntimos de dólar en una central de carbón, de 4 a 6 en los parques eólicos, de 5 a 10 en una de petróleo, de 12 a 15 en una central nuclear y de 25 a 40 céntimos utilizando células fotovoltaicas. En los próximos años se espera reducir el coste del kWh a 12 céntimos de euro antes de 2010 y a 4 céntimos para el año 2030. Claro que en los costes anteriores no se incluyen los resultados del deterioro causado al ambiente por las distintas maneras de producir la electricidad. El efecto fotovoltaico, descubierto por Becquerel en 1839, consiste en la generación de una fuerza electromotriz en un dispositivo semiconductor, debido a la absorción de la radiación luminosa. Las células fotovoltaicas convierten la energía luminosa del sol en energía eléctrica, con un único inconveniente: el coste económico todavía muy elevado para la producción centralizada. Sin embargo, las células fotovoltaicas son ya competitivas en todos aquellos lugares alejados de la red y con una demanda reducida, como aldeas y viviendas sin electrificar, repetidores de televisión, balizas, agricultura, faros, calculadoras y otros bienes de consumo. A lo largo de toda la década el mercado fotovoltaico creció a ritmos anuales superiores al 40%, y ya hay más de 2.500 megavatios instalados en todo el mundo. Se calcula que deberán instalarse aún otros 85.000 MWp, invirtiendo unos 50.000 millones de euros, para conseguir que la fotovoltaica sea competitiva en el mercado, lo que implica un precio de 1 euro por vatio. Para obtener una reducción del 20% del precio, se debe duplicar la producción, según la curva de experiencia o de aprendizaje. Actualmente la mayoría de las células fotovoltaicas son de silicio monocristalino de gran pureza, material obtenido a partir de la arena, muy abundante en la naturaleza. La purificación del silicio es un proceso muy costoso, debido a la dependencia del mercado de componentes electrónicos, que requiere una pureza (silicio de grado electrónico) superior a la requerida por las células fotovoltaicas. La obtención de silicio de grado solar, directamente del silicio metalúrgico, cuya pureza es del 98%, abarataría considerablemente los costes, al igual que la producción de células a partir del silicio amorfo u otros procedimientos, hoy en avanzado estado de investigación y cuyos resultados pueden ser decisivos en la próxima década. La multinacional BP produce células de alto rendimiento en su fábrica de Madrid, la denominada Saturno. El apoyo institucional, abriendo nuevos mercados, puede acortar el tiempo necesario para la plena competitividad de las células fotovoltaicas. La superficie ocupada no plantea problemas. En el área mediterránea se podrían producir 90 millones de kWh anuales por kilómetro cuadrado de superficie cubierta de células fotovoltaicas, y antes del año 2010, con los rendimientos previstos, se alcanzarán los 150 millones de kWh por km2. Por lo que se refiere al almacenamiento, la producción de hidrógeno por electrólisis y su posterior empleo para producir electricidad u otros usos, puede ser una óptima solución. El objetivo del gobierno era tener instalados 143,7 MWp (megavatios pico) en el año 2010, de ellos 135 MWp nuevos, de los que 61 MWp deberían instalarse antes de 2006 (el 15% en instalaciones aisladas y el 85% en instalaciones conectadas a la red). Entre 1998 y 2001 se instalaron sólo 6,9 MWp. Mientras en Alemania tenían 87,5 MWp (siete veces más que en España), gracias al programa 100.000 tejados solares, que prevé instalar 300 MWp entre 1999 y 2004. Incluso Holanda, con poco sol y superficie, tenía más potencia instalada (12,2 MWp). El precio del kWh fotovoltaico, con las primas, asciende a 0,397 euros (máximo) y a 0,217 euros (mínimo), frente a 0,72 y 0,35 en Austria, 0,48 en Alemania y 0,39 y 0,23 en Portugal. En España se fabricaron 50,85 MWp de células fotovoltaicas en 2002 (el 36% de la producción europea), destinados en casi un 90% a la exportación. Los dos mayores fabricantes son Isofotón y BP Solar, aunque en el sector operan 182 empresas, que emplean a más de 4.000 personas. Los precios de los módulos fotovoltaicos se han reducido mucho, desde 7,76 euros/Wp en 1990 a 3,3 euros/Wp en 2000. En España, con una radiación solar diaria superior en la casi totalidad del territorio a 4 kWh por metro cuadrado, el potencial es inmenso. Sólo en los tejados de las viviendas españolas se podrían producir anualmente 180 TWh. En el mundo, según el informe "Solar Generation" de la Asociación de la Industria Fotovoltaica Europea y Greenpeace, se debería llegar a 276 TWh en el año 2020, con unas inversiones anuales de 75.000 millones de euros.
Ríos de energíaLa energía hidroeléctrica se genera haciendo pasar una corriente de agua a través de una turbina. La electricidad generada por una caída de agua depende de la cantidad y de la velocidad del agua que pasa a través de la turbina, cuya eficiencia puede llegar al 90%. El aprovechamiento eléctrico del agua no produce un consumo físico de ésta, pero puede entrar en contradicción con otros usos agrícolas o de abastecimiento urbano, y sobre todo, las grandes centrales tienen un gran impacto ambiental. Las centrales hidroeléctricas en sí mismas no son contaminantes; sin embargo, su construcción produce numerosas alteraciones del territorio y de la fauna y flora: dificulta la migración de peces, la navegación fluvial y el transporte de elementos nutritivos aguas abajo, provoca una disminución del caudal del río, modifica el nivel de las capas freáticas, la composición del agua embalsada y el microclima, y origina el sumergimiento de tierras cultivables y el desplazamiento forzado de los habitantes de las zonas anegadas. En la mayoría de los casos es la forma más barata de producir electricidad, aunque los costes ambientales no han sido seriamente considerados.
El potencial eléctrico aún sin aprovechar es enorme. Apenas se utiliza el 17% del potencial a nivel mundial, con una gran disparidad según los países. Europa ya utiliza el 60% de su potencial técnicamente aprovechable. Los países del tercer mundo solamente utilizan del 8% de su potencial hidráulico. En España el potencial adicional técnicamente desarrollable podría duplicar la producción actual, alcanzando los 65 TWh anuales, aunque los costes ambientales y sociales serían desproporcionados. Las minicentrales hidroeléctricas causan menos daños que los grandes proyectos, y podrían proporcionar electricidad a amplias zonas que carecen de ella. El Plan de Fomento fija como objetivo 720 nuevos MW, hasta alcanzar los 2.230 MW. Entre 1998 y 2001 se han puesto en funcionamiento 95,4 MW, por lo que al ritmo actual no se alcanzará el objetivo, a causa sobre todo de las barreras administrativas y el impacto ambiental. En el año 2001 la potencia de las centrales hidráulicas con menos de 10 MW ascendió a 1.607,3 MW y la producción llegó a 4.825 GWh, y en la gran hidráulica la potencia fue de 16.399,3 MW y la producción fue de 39.014 GWh. Hay que recordar que el año 2001 fue excepcional, pues llovió mucho más de lo usual. Energía eólica La energía eólica es una variante de la energía solar, pues se deriva del calentamiento diferencial de la atmósfera y de las irregularidades de relieve de la superficie terrestre. Sólo una pequeña fracción de la energía solar recibida por la Tierra se convierte en energía cinética del viento y sin embargo ésta alcanza cifras enormes, superiores en varias veces a todas las necesidades actuales de electricidad. La energía eólica podría proporcionar cinco veces más electricidad que el total consumido en todo el mundo, sin afectar a las zonas con mayor valor ambiental. La potencia que se puede obtener con un generador eólico es proporcional al cubo de la velocidad del viento; al duplicarse la velocidad del viento la potencia se multiplica por ocho, y de ahí que la velocidad media del viento sea un factor determinante a la hora de analizar la posible viabilidad de un sistema eólico. La energía eólica es un recurso muy variable, tanto en el tiempo como en el lugar, pudiendo cambiar mucho en distancias muy reducidas. En general, las zonas costeras y las cumbres de las montañas son las más favorables y mejor dotadas para el aprovechamiento del viento con fines energéticos. La conversión de la energía del viento en electricidad se realiza por medio de aerogeneradores, con tamaños que abarcan desde algunos vatios hasta los 5.000 kilovatios (5 MW). Los aerogeneradores se han desarrollado intensamente desde la crisis del petróleo en 1973, habiéndose construido desde entonces más de 150.000 máquinas. La capacidad instalada era de 40.000 MW en 2003, concentrada en Alemania, España, Estados Unidos y Dinamarca. En 2004 ya es competitiva la producción de electricidad en los lugares donde la velocidad media del viento supera los 4 metros por segundo. Se espera que dentro de unos pocos años también las máquinas grandes instaladas en el mar lleguen a ser rentables. La energía eólica no contamina y su impacto ambiental es muy pequeño comparado con otras fuentes energéticas. De ahí la necesidad de acelerar su implantación en todas las localizaciones favorables, aunque procurando reducir las posibles repercusiones negativas, especialmente en las aves y en el paisaje, en algunas localizaciones. El carbón, y posteriormente la electricidad, dieron al traste con el aprovechamiento del viento hasta la crisis energética de 1973, año en que suben vertiginosamente los precios del petróleo y se inicia el renacimiento de una fuente cuya aportación en las próximas décadas, puede llegar a cubrir el 20 por ciento de las necesidades mundiales de electricidad sin cambios en la gestión de la red de distribución. En el año 2004 la potencia eólica en España superará los 7.000 MW. El precio del kWh en España era de 0,0628 euros en el sistema de precios fijo o de 0,066 del pool más incentivo (0,037 del llamado precio pool y 0,0289 de compensaciones), frente a los 0,09 de Alemania, y es uno de los más bajos de la Unión Europea, pero el sistema de apoyo al precio ha demostrado su eficacia en Alemania y en España. Desde 1996 a 2002 el precio de la tarifa eólica para los productores acogidos al Real Decreto 2366/94 ha bajado un 36,94%. Los costes de la eólica son ya competitivos con los de las energías convencionales: unos 900 euros el KW instalado.
En el año 2010 en España llegaremos a 20.000 MW, y en el año 2040 podemos llegar sin problemas a 100.000 MW, produciendo gran parte de la electricidad que consumimos, y también hidrógeno, pero para ello se deben superar ciertas dificultades para integrar la eólica en la red eléctrica, y superar la oposición irracional a los nuevos parques eólicos. Cada kWh eólico permitiría ahorrar un kilogramo de CO2, entre otras sustancias contaminantes. La eólica es la manera más económica de reducir las emisiones contaminantes y avanzar hacia la sostenibilidad. Energía geotérmicaEl gradiente térmico resultante de las altas temperaturas del centro de la Tierra (superiores a los mil grados centígrados), genera una corriente de calor hacia la superficie, corriente que es la fuente de la energía geotérmica. El valor promedio del gradiente térmico es de 25 grados centígrados por cada kilómetro, siendo superior en algunas zonas sísmicas o volcánicas. Los flujos y gradientes térmicos anómalos alcanzan valores máximos en zonas que representan en torno a la décima parte de las tierras emergidas: costa del Pacífico en América, desde Alaska hasta Chile, occidente del Pacífico, desde Nueva Zelanda a Japón, el este de África y alrededor del Mediterráneo. El potencial geotérmico almacenado en los diez kilómetros exteriores de la corteza terrestre supera en 2.000 veces a las reservas mundiales de carbón. La explotación comercial de la geotermia, al margen de los tradicionales usos termales, comenzó a finales del siglo XIX en Lardarello (Italia), con la producción de electricidad. Hoy son ya 22 los países que generan electricidad a partir de la geotermia, con una capacidad instalada de unos 8.000 MW, equivalente a ocho centrales nucleares de tamaño grande. Estados Unidos, Filipinas, México, Italia y Japón, en este orden, son los países con mayor producción geotérmica.
Actualmente, una profundidad de perforación de 3.000 metros constituye el máximo económicamente viable; otra de las limitaciones de la geotermia es que las aplicaciones de ésta, electricidad o calor para calefacciones e invernaderos, deben encontrarse en las proximidades del yacimiento en explotación. La geotermia puede llegar a causar algún deterioro al ambiente, aunque la reinyección del agua empleada en la generación de electricidad minimiza los posibles riesgos. Los países con mayores recursos, en orden de importancia, son China, Estados Unidos, Canadá, Indonesia, Perú y México. El potencial geotérmico español es de 600 ktep anuales, según una estimación muy conservadora del Instituto Geominero de España. Para el año 2010 se pretende llegar a las 150 Ktep. Los usos serían calefacción, agua caliente sanitaria e invernaderos, no contemplándose la producción de electricidad. Biomasa La utilización de la biomasa es tan antigua como el descubrimiento y el empleo del fuego para calentarse y preparar alimentos, utilizando la leña. Aún hoy, la biomasa es la principal fuente de energía para usos domésticos empleada por más de 2.000 millones de personas en el Tercer Mundo. Los empleos actuales son la combustión directa de la leña y los residuos agrícolas y la producción de alcohol como combustible para los automóviles en Brasil. Los recursos potenciales son ingentes, superando los 120.000 millones de toneladas anuales, recursos que en sus dos terceras partes corresponden a la producción de los bosques. ¿Es la biomasa una energía alternativa? A lo largo y ancho del planeta el consumo de leña está ocasionando una deforestación galopante. En el caso del Brasil se ha criticado el empleo de gran cantidad de tierras fértiles para producir alcohol que sustituya a la gasolina en los automóviles, cuando la mitad de la población de aquel país está subalimentada. Por otra parte, la combustión de la biomasa es contaminante. En el caso de la incineración de basuras, la combustión emite contaminantes, algunos de ellos cancerígenos y disruptores hormonales, como las dioxinas. También es muy discutible el uso de tierras fértiles para producir energía en vez de alimentos, tal y como se está haciendo en Brasil, o el empleo de leña sin proceder a reforestar las superficies taladas. En España actualmente el potencial energético de los residuos asciende a 26 Mtep, para una cantidad que en toneladas físicas supera los 180 millones: 15 millones de toneladas de Residuos Sólidos Urbanos con un potencial de 1,8 Mtep, 12 millones de toneladas de lodos de depuradoras, 14 millones de t de residuos industriales (2,5 Mtep), 17 Mt de residuos forestales (8,1 Mtep), 35 Mt de residuos agrícolas (12,1 Mtep), 30 Mt de mataderos y 65 Mt de residuos ganaderos (1,3 Mtep). El reciclaje y la reutilización de los residuos permitirán mejorar el medio ambiente, ahorrando importantes cantidades de energía y de materias primas, a la vez que se trata de suprimir la generación de residuos tóxicos y de reducir los envases. La incineración no es deseable, y probablemente tampoco la producción de biocombustibles, dadas sus repercusiones sobre la diversidad biológica, los suelos y el ciclo hidrológico. A más largo plazo, el hidrógeno es una solución más sostenible que el etanol y el metanol. El Plan de Fomento de las Energías Renovables en España prevé que la biomasa llegue a 10.295 ktep. Hoy apenas llegamos a 3.600 ktep (incluyendo los biocarburantes y el biogás), con un incremento ínfimo respecto a años anteriores. Y las perspectivas no son mucho mejores. Con las políticas actuales, en el año 2010 difícilmente se superará el 50% de los objetivos del Plan (poco más de 5 Mtep), y tampoco se debería hacer mucho más. Los restos de madera, como sostiene ANFTA (Asociación Nacional de Fabricantes de Tableros), son demasiado valiosos para ser quemados, pues constituyen la materia prima base de la industria del tablero aglomerado y sólo debe quemarse como aprovechamiento último, y España es muy deficitaria en restos de madera (se importan más de 350.000 m3), y en madera en general (se importa más del 50%). Además el CO2 se acumula en los tableros (cada metro cúbico de tablero aglomerado fija 648 kg de CO2), mientras que la quema lo libera, se genera más empleo en las zonas rurales, más valor añadido y se producen muebles de madera al alcance de todos. El reciclaje debe tener prioridad frente al uso energético y los únicos residuos de madera que se deberían incinerar son las ramas finas de pino, los restos de matorral, las cortezas y el polvo de lijado. Los costes de extracción y transporte de las operaciones de limpieza del monte para las plantas de biomasa son de 0,16 euros por kg, a los que hay que añadir los de almacén, cribado y astillado, secado, densificación y el coste del combustible auxiliar. Hoy las centrales termoeléctricas de biomasa no son viables económicamente, y además esos residuos también son necesarios para el suelo (aporte de nutrientes, erosión). REFERENCIAS Internet Revistas
    APPAINFOLasenergías.comEficiencia Energética y Energías Renovables, boletín del IDAE. Números 1, 2, 3, 4, 5 y 6.Energías RenovablesC.V. Revista internacional de energía y medio ambienteEnergética XXIEra SolarTecnoambienteInfopowerTecnoenergíaEnergía. Ingeniería Energética y MedioambientalWorld Watch
Libros y estudios *IDAE (1999). Plan de Fomento de las Energías Renovables en España. Madrid.*Ministerio de Economía (2002). Planificación de las redes de transporte eléctrico y gasista 2002-2011. Madrid.*ANFTA (Asociación Nacional de Fabricantes de Tableros) (2002). Restos de madera: demasiado valiosos para ser quemados. Madrid.*Johansson, T. B. et el (1993): Renewable Energy, Island Press, Washington; D. Deudney y C. Flavin: "Renewable energy: The power to Choose", New York, Norton, 1983.*Goldemberg et al.: Energy for a sustainable world, John Wiley and sons, New Delhi, 1988.*Ogden, J.M. et Williams R. H.: Solar Hydrogen. Moving Beyond Fossil Fuels, World Resources Institute, Washington, 1989.*Maycock, P.: Photovoltaic thecnology, perfomance, cost and market forecast. PV Energy systems, Casanova, 2004.*ASIF (2003): Hacia un futuro con electricidad solar. Madrid. José Santamarta Flórez director de World Watch worldwatch@nodo50.org http://www.nodo50.org/worldwatch Teléfono: +34 650 94 90 21

Comentar esta noticia    Imprimir esta noticia    Enviar esta noticia    AddThis Social Bookmarking Widget © Copyright 2004 Informativos.Net
Saludos
Rodrigo González Fernández
DIPLOMADO EN RSE DE LA ONU
www.Consultajuridicachile.blogspot.com
www.lobbyingchile.blogspot.com
www.el-observatorio-politico.blogspot.com
Renato Sánchez 3586
teléfono: 5839786
e-mail rogofe47@mi.cl
Santiago-Chile
 
Soliciten nuestros cursos de capacitación   y asesorías a nivel internacional y están disponibles para OTEC Y OTIC en Chile